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Our Goal

• Identify module structure 
in biological networks, 
enriched for a collection of 
disease gene sets.



PPI network: issue with defining local neighborhoods:   
“small-world” network where everything is nearby!



Dream Network 1



Dream Network 2



Dream Network 3



Dream Network 4



Dream Network 5



Dream Network 6



Our Approach

Cluster the resulting distance matrix

Correct cluster sizes
Look for bipartite 

subgraphs

Return valid clusters

DSD
Diffusion State Distance
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Our insight: not all short paths give 
equal indications of similarity

Define He (A,B) to be the expected number of times a k-step 
random walk starting at A reaches B (including 0-length walk)

k



DSD: A Spectral Distance Metric

• Hek (A) = (Hek (A, v1), Hek (A, v2), …, Hek (A, vn)) 

• DSDk (A, B) = | Hek (A) - Hek (B) |1 

• We prove DSD is a metric, and converges as k→∞ :            
call the converged version DSD (A, B) .



DSD spreads out distances
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Speeding Up DSD

For an ergodic network, the DSD distance between two nodes u and 
v can also be written as

where bi is the ith basis vector, I is the identity matrix, P is the 
transition matrix of the network, and W is a matrix where each row is 
a copy of πT = the steady state distribution of the network. 

(proof of this in Cao et al. 2013)



Speeding Up DSD

• Computing the matrix inverse 
(I - P + W)-1 is the most 
computationally expensive 
part 

• We developed an efficient 
algorithm to reduce the 
amortized time for sparse 
networks, using algebraic 
multigrid methods



The method only computes approximate 
DSD; some artifacts, good enough
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Genetic interactions (epistasis)

• For non-essential  genes, we can compare the 
growth of the double knockout to its component 
single knockouts

Picture: Ulitsky



Finding Bipartite Subgraphs

• “Between Pathway 
Model” (Kelley and Ideker, 2005) 

• Regions having many negative 
genetic interactions between 
them (and physical interactions 
within regions)  

• May indicate compensatory 
biological pathways 

• Use Brady et. al 2009 definition;  
based only on negative genetic 
interactions (ignore physical 
interactions)



What is the Quality of a 
BPM?

Once we obtain a candidate  
BPM we can score it using  

interaction data. 

Sum interactions within 

Sum interactions between 

Take the difference and 
normalize to create an 

interaction score

-0.664347

0.553838

-7.321556

-6.315511

3.685398

-5.252571

-3.365368

3.236723

-1.366879

2.13473

0.13342

Look for a collection of BPMs in half the networks
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Subchallenge 1, Step 1: Get the 
DSD matrix for each network



What about the directed network?

• We wanted to preserve edge 
direction, but keep the 
network (strongly) connected 
to run DSD in a sensible way 

• Add low-weight back edges if 
none exists already 

• Gave better results than 
treating all edges as 
undirected

u v
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We have a distance matrix.  
Now what?

• Many pre-existing methods to 
cluster a pairwise distance (or 
similarity) matrix 

• Spectral clustering performed 
the best in the leaderboard 
rounds



Spectral Clustering

• Convert distance matrix to similarity matrix using radial 
basis function (RBF) kernel (high distance -> low 
similarity and vice-versa) 

• Dimension reduction + k-means clustering (used 
default scikit-learn implementation) 

• Tested different values of k in the training rounds

Pedregosa et al, JMLR 12:2825-2830 (2011)



Network 1 - Choosing k

Submission NS (train) NS for different FDR
 (1%, 2.5%, 10%) NS (test)

k = 1000 14 (8, 10, 22) 16

k = 1200 14 (3, 7, 19) N/A

k = 500, altered 
weighting scheme 14 (5, 9, 23) N/A

k = 500 12 (3, 7, 20) N/A



Network 5 - Choosing k

Submission NS (train) NS for different FDR
 (1%, 2.5%, 10%) NS (test)

GC and k=100 
overlap 6 (1, 2, 8) N/A

GC and k=200 
overlap 5 (3, 3, 7) 5

k=100 5 (1, 3, 6) N/A



So far we have: 

Cluster the resulting distance matrix

Correct cluster sizes
Look for bipartite 

subgraphs

Return valid clusters
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• Small clusters (size < 3): throw out 

• Large clusters (size > 100): partition recursively 
(again using spectral clustering on the DSD 
matrix), until all clusters are of size < 100 

• In practice, splitting large clusters improved most 
of the results we tested, and only hurt one result 
(out of ~15 comparisons)

Correcting Cluster Sizes



• For networks 1, 4, and 6, we’re done. 

• For networks 2, 3, and 5, we tried one more trick…
looking for BPMs! 



Finding Bipartite Subgraphs

• We can identify many 
candidates by looking only at 
negative genetic interactions 
(Brady et al., 2009) 

• We suspected there might be 
bipartite subgraphs in networks 
2, 3, and 5 

• We used the Genecentric 
software package to identify 
bipartite substructure



Clusters from bipartite 
subgraphs

 Clusters from spectral 
clustering

Single set of final clusters

But, we’re not quite finished

(for networks 2, 3, and 5)



Merging Clusters: Approach 1 (greedy)
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Merging Clusters: Approach 2 (overlap)
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Looking back:
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Subchallenge 2

• Took union of networks  

• For overlapping edges with 
weights w1, w2, create edge 
with weight max(w1, w2) + 0.05 

• Same DSD + spectral 
clustering approach as before 

• Union of networks 1, 2, and 4 
performed the best across FDR 
levels



Subchallenge 2:  
Step 0: Superimpose networks 1,2 and 4 

Step 1: Get the DSD matrix for the combined network



Future Directions

• Test modifications to edge weights 

• Modify other clustering algorithms to run on top of DSD, there are 
many possible alternatives 

• We could also test additional methods of combining edges (or adding 
networks) for Subchallenge 2
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Looking back

Cluster the resulting distance matrix
(spectral clustering)

Correct cluster sizes
(recursive spectral 

clustering)

Look for bipartite 
subgraphs (Genecentric)

Return valid clusters (putative disease modules)

Define a network distance measure (DSD)


