

Background

Research questions:

- Which -omics type captures the functional signatures of cancer mutations most effectively? Is this dependent on the gene(s) that are mutated?
- Does combining multiple -omics types improve detection?

Framing as a prediction problem:

We want to predict cancer mutation presence or absence using -omics data in the TCGA Pan-Cancer Atlas: gene expression, DNA methylation, reverse phase protein array (RPPA), microRNA, somatic mutational signatures.

Figure from Way et al. 2018¹

Approach

- Cancer gene set from Vogelstein et al. 2013², \sim 85 cancer-related genes
- Elastic net logistic regression
- 2 replicates (random seeds) x 4-fold CV, stratified by cancer type
- Compare classifiers against baseline with permuted labels, and compare directly between data types

Prediction of cancer mutation states using multiple data modalities reveals the utility and consistency of gene expression and DNA methylation

Jake Crawford¹, Brock C. Christensen², Maria Chikina³, Casey S. Greene^{4,5}

¹Genomics and Computational Biology (GCB) Graduate Group, Perelman School of Medicine, University of Pennsylvania ²Department of Epidemiology, Geisel School of Medicine, Dartmouth College ³Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh ⁴Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine ⁵Center for Health AI, University of Colorado School of Medicine

On aggregate over the Vogelstein et al. gene set, gene expression is a slightly more effective predictor than the methylation arrays (Illumina 27K/450Kmerged and Illumina 450K).

significantly differ between data types (data points around origin).

When we compare all data types using all cancer genes, the expression and DNA methylation datasets significantly outperform the remaining data types.

ISMB/ECCB 2021: July 25-30

Results

Looking at performance for individual genes, however, most genes do not

Data type

We also built multi-omics models by concatenating combinations of the expression and methylation datasets. For each data type, we used the top 5000 principal components as predictive features.

Using six pan-cancer driver genes as targets, none of the multi-omics models significantly outperformed the best-performing single-omics model.

Data and code availability:

Link to this poster:

- 2018.
- vol. 339, no. 6127, pp. 1546–1558, 2013.

For the remaining data types, on the individual gene level, gene expression generally provides better performance (genes/points in the top left).

Greene

_ab

IDH1 KRAS SETD2 PIK3CA **TP53** Taraet aene

Best performing single-omics vs. multi-omics data type, per gene

We anticipate that these results will be useful in study design: gene expres*sion* and *DNA methylation* are \sim equally effective as a functional readout.

Relevant Links

https://github.com/greenelab/mpmp

Draft of manuscript (currently in-progress using Manubot³):

https://greenelab.github.io/mpmp-manuscript/

http://jjc2718.github.io/ismb_2021_poster.pdf

References

[1] G. P. Way, F. Sanchez-Vega, K. La, J. Armenia, W. K. Chatila, A. Luna, C. Sander, A. D. Cherniack, M. Mina, G. Ciriello, et al., "Machine learning detects pan-cancer Ras pathway activation in The Cancer Genome Atlas," Cell Reports, vol. 23, no. 1, pp. 172–180,

[2] B. Vogelstein, N. Papadopoulos, V. E. Velculescu, S. Zhou, L. A. Diaz, and K. W. Kinzler, "Cancer genome landscapes," Science,

[3] D. S. Himmelstein, V. Rubinetti, D. R. Slochower, D. Hu, V. S. Malladi, C. S. Greene, and A. Gitter, "Open collaborative writing with Manubot," PLoS Computational Biology, vol. 15, no. 6, p. e1007128, 2019.